| Atmospheric and<br>Oceanic Sciences<br>3/3L    |   |  |
|------------------------------------------------|---|--|
| Introduction to the<br>Atmospheric Environment |   |  |
|                                                |   |  |
|                                                | 1 |  |



Math Science 1961 310-825-3023 lew@atmos.ucla.edu AIM: jklew888 Twitter: atmosciproflew

# Grades

- 2 closed-book exams, 650 points total
- 3 take-home quizzes, 150 points total
- 5 of 7 in-lecture quizzes, 100 points total
- 4 in-discussion quizzes, 100 points total



## **Laboratory Section (3L)**

GE requirement: Foundations of Scientific Inquiry—2 courses from Physical Sciences, one of which is a 5-unit course with lab/demo or Writing II credit.

Lecture/discussion counts as a 4-unit course

Take 1-unit lab at same time to fulfill 5-unit requirement, if needed

In any case, lab can only be taken concurrently with lecture/discussion

4







## **Podcasts**

Audio recordings of lectures, enhanced with slide builds



7

8

9

Go to class web site to get instructions on how to subscribe using iTunes

### **Ch. 1: Overview of the Atmosphere and Weather**

#### **The Atmosphere**

- $\rightarrow$  Gaseous Composition
- → Vertical Density, Temperature, and Pressure Profiles
- → Atmospheric Layers
- → Evolution of Earth's Atmosphere

#### Weather

- → Definitions and Disciplines of Study
- → Weather Elements
- $\rightarrow$  Historical Highlights







| TABLE 1-2 Permanent Gases of the Atmosphere |                |                   |                  |
|---------------------------------------------|----------------|-------------------|------------------|
| Constituent                                 | Formula        | Percent by Volume | Molecular Weight |
| Nitrogen                                    | N <sub>2</sub> | 78.08             | 28.01            |
| Oxygen                                      | O <sub>2</sub> | 20.95             | 32.00            |
| Argon                                       | Ar             | 0.93              | 39.95            |
| Neon                                        | Ne             | 0.002             | 20.18            |
| Helium                                      | He             | 0.0005            | 4.00             |
| Krypton                                     | Kr             | 0.0001            | 83.8             |
| Xenon                                       | Xe             | 0.00009           | 131.3            |
| Hydrogen                                    | $H_2$          | 0.00005           | 2.02             |

## **Variable Gases**

• Thousands of gases, whose concentrations vary over short time scales:

#### $\rightarrow$ Water Vapor (H<sub>2</sub>O)

- 1-4%, depending on temperature
- Mostly located below 10 km altitude

### $\rightarrow$ Carbon Dioxide (CO<sub>2</sub>)

• 0.038% ±0.0006%, depending on season

#### → Ozone (O<sub>3</sub>)

Concentration varies with location (urban smog, stratospheric ozone layer)

## Important Features of Variable Gases

## • Water Vapor

- → Heat transport
- → Hydrologic Cycle
- Carbon Dioxide
  - → Greenhouse Effect
  - → Respiration/Green Plant Photosynthesis
  - $\rightarrow$  Increasing due to human activities



15





















# Ionosphere

- Outer layers of atmosphere exposed to strong sunlight
  - → Produces electrically charged ions







## **Atmospheric Evolution**

- Primordial Atmosphere: 4.5 BYA
  - → Condensation of Interstellar Matter (mostly Hydrogen and Helium)
- Secondary Atmosphere: 4 BYA
  - → Formed by planetary outgassing (mostly Water Vapor and Carbon Dioxide)
  - $\rightarrow$  Later, water vapor condensed out to form oceans, and carbon dioxide dissolved into the ocean water

28





environment: nitrogen/ oxygen





## Definitions

- Weather
  - → An observation of the weather elements at one point in time
- Climate
  - → A summary of a set of weather observations taken over a period of time









