

Gra	des
Homework	150 pts
2 Midterms	300 pts
Final Exam	550 pts
Total	1000 pts

Homework

- There will be 6 homework sets
- Homework is due by the end of business (~ 5 pm) on the due date
- Late homework will receive partial credit as outlined in the syllabus
- You are encouraged to work together and discuss approaches to solving problems, but must turn in your own work

Le	cture Notes
AOS 104 Fundamentals of Air and Water Pollution	
Printer Set Grades Ramases 10% Examin 10% Foot tase 10% Total tase 10% Total 100%	
Homework • There will be themework exist • There will be themework exist • States eventue in the existence of the existenc	
Overview of Topics - Intracting pathtine scenestration - Stranks of pathtines on earling split- - Strank of earliest on earling split- - Strank of the scenestration - Strank of the	

4

5

6

Topics of the course

- Calculating pollution concentration
- Effects of pollution on acidity (pH)—acid rain
- Types of water pollution
- \rightarrow Health effects from water pollution
- Types of air pollution
 - \rightarrow Health effects of air pollution
- Urban air pollution—bad ozone
- Stratospheric air pollution—depletion of good ozone
- Global climate change

Introduction

- Measurement of Concentration
 - \rightarrow Liquids
 - \rightarrow Air
 - \rightarrow Conversions Involving the Ideal Gas Law
- Material Balance Models
 - \rightarrow Basics
 - → Steady-state Model With Conservative Pollutants
 - → Residence Time
 - → Steady and Non-steady Models With Nonconservative Pollutants

Units of Measurement

- Both SI and British units used
 - → Be able to convert between these two standards

\rightarrow Examples

Quantity	SI	British
Length	m	ft
Volume	m ³	ft3
Power	watt	BTU/hr
Density	kg/m³	lb/ft ³

Concentration

- The amount of a specified substance in a unit amount of another substance
 - → Usually, the amount of a substance dissolved in water or mixed with the atmosphere
- Can be expressed as...

Mass/Mass	g/kg, lb/ton, ppmm, ppbm
Mass/Volume	g/L, μ g/m ³
Volume/Volume	mL/L, ppmv, ppbv
Volume/Mass	L/kg
Moles/Volume	molarity, M, mol/L

8

7

Liquids

Concentrations of substances dissolved in water are generally given as mass per unit volume.

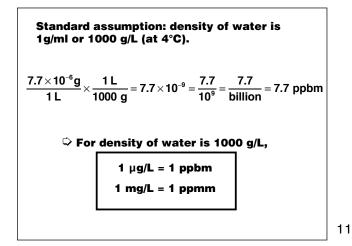
e.g., milligrams/liter (mg/L) or micrograms/ liter (µg/L)

Concentrations may also be expressed as a mass ratio, for example:

7 mass units of substance A per million mass units of substance B is 7 ppmm.

Example 1

23 µg of sodium bicarbonate are added to 3 liters of water.


What is the concentration in μ g/L and in ppb (parts per billion) and in moles/L?

$$\frac{23\,\mu\text{g}}{3\,\text{L}} = 7.7\,\frac{\mu\text{g}}{\text{L}}$$

To find the concentration in ppb we need the weight of the water.

10

12

Sometimes, liquid concentrations are expressed as mole/L (M). e.g., concentration of sodium bicarbonate (NaHCO₃) is 7.7 µg/L Molecular Weight = $[23 + 1 + 12 + (3 \times 16)]\frac{g}{mol}$ = $84\frac{g}{mol}$ Molar Concentration = $\frac{7.7\mu g}{1 L} \times \frac{1 \text{ mol}}{84 \text{ g}} \times \frac{1 \text{ g}}{1 \times 10^6 \mu g}$ = $9.2 \times 10^{-8} \frac{mol}{L}$

Air

Gaseous pollutants—use volume ratios: ppmv, ppbv

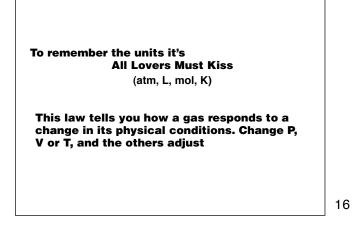
Or, mass/volume concentrations—use m³ for volume

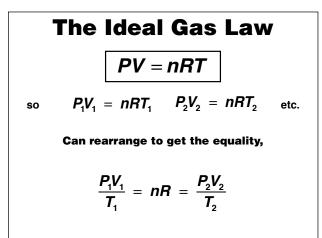
Example 2

A car is running in a closed garage. Over 3 minutes, it expels 85 L of CO. The garage is 6 m \times 5 m \times 4 m. What is the resulting concentration of CO? Assume that the temperature in the room is 25°C.

13

Solution: The volume of CO is 85 L and Volume of room = 6 m × 5 m × 4 m = 120 m³ = 120000 L Concentration = $\frac{85 \text{ L}}{120000 \text{ L}}$ = 0.000708 = 708 × 10⁻⁶ = 708 ppmv

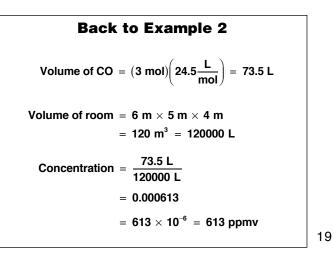

Example 2 Cont.


Instead of 85 L of CO, let's say 3 moles of CO were emitted.

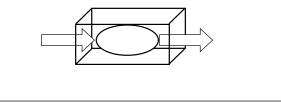
We need to find the volume occupied by three moles of CO.

IDEAL GAS LAW: PV= nRT

P = Pressure (atm) V = Volume (L) n = Number of moles R = Ideal Gas Constant = 0.08206 L·atm·K⁻¹·mol⁻¹ T = Temperature (K)



The ideal gas law also tells you that:


```
) at 0°C (273 K) and 1 atm (STP),
1 mole occupies 22.4 L
```

```
    at 25°C (298 K) (about room temperature)
and 1 atm,
    1 mole occupies 24.5 L
```


Material Balances

- Expresses Law of Conservation of Mass
- Material balances can be applied to many systems—organic, inorganic, steady-state, financial, etc.

Basic equation of material balance

Input = Output - Decay + Accumulation

(eq. 1.11)

Input, output, etc. are usually given as rates, but may also be quantities (i.e. masses).

This equation may be written for the overall system, or a series of equations may be written for each component and the equations solved simultaneously.

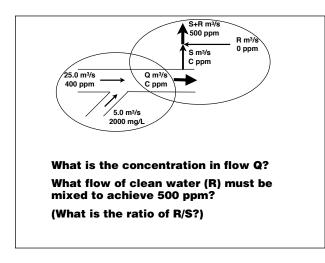
Steady-state (or equilibrium), conservative systems are the simplest

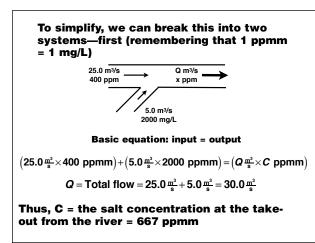
➡ Accumulation rate = 0, decay rate = 0

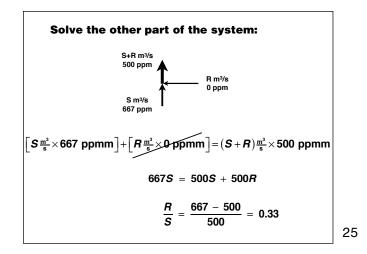
Example 3

Problem 1.7 – Agricultural discharge containing 2000 mg/L of salt is released into a river that already has 400 ppm of salt. A town downstream needs water with <500 ppm of salt to drink. How much clean water do they need to add?

Maximum recommended level of salts for drinking water = 500 ppm.


Brackish waters have > 1500 ppm salts.


Saline waters have > 5000 ppm salts.


Sea water has 30,000-34,000 ppm salts.

22

23

Residence Time

- Lifetime or residence time of substance ≡ amount / rate of consumption
- Lifetime of Earth's petroleum resources:

 $1.0 \times 10^{22} \text{ J} / 1.35 \times 10^{20} \text{ J/yr} = 74 \text{ years}$

ANWR has ~5.7 to 16.3×10^9 barrels of oil; best guess is 10×10^9 . The US consumes 19 million barrels/day of oil. How much time does this give us?

• The residence time may be defined for a system in *steady-state* as:

Stock (material in system) Flow rate (in or out)

- Residence time in a lake: The average time water spends in the lake
- Some water may spend years in the lake
- Some may flow through in a few days
 - \Rightarrow Depends on mixing.

• In the first approximation, consider only stream flow in and stream flow out.

T = M/Fin = M/Fout

For this very simple steady state system, we calculate the residence time

Ex. The volume of a lake fed by a stream flowing at 7×10^5 m³/day is 3×10^8 m³. What is the residence time of the water in the lake?

$$\frac{3 \times 10^8 \text{ m}^3}{7 \times 10^5 \frac{\text{m}^3}{\text{day}}} = 430 \text{ days}$$

More Material Balances

- What if a substance is removed by chemical, biological or nuclear processes?
- → The material is still in steady-state if its concentration is not changing.
- Steady-state for a non-conservative pollutant:
- → We now need to include the decay rate in our material balance expression:

Input rate = Output rate + Decay rate

29

28

Assume decay is proportional to concentration ("1st order decay").

$$\frac{dC}{dt} = -kC$$

where k = reaction rate coefficient, in units of 1/time.

C = concentration of pollutant

Separate variables and integrate:

$$\int_{c_0}^{c} \frac{dC}{C} = \int_{0}^{t} -k \, dt$$

Solution:
$$\ln(C) - \ln(C_0) = -kt - kt_0$$

 $\ln(C) - \ln(C_0) = \ln\left(\frac{C}{C_0}\right) = -kt$
Take the exponential of each side:
 $C = C_0 e^{-kt}$
For a particular system (i.e., a lake), we can write a total mass decay rate (mass/time), that we can compare with the input and output rates:
 $= kCV \Rightarrow mass removal rate$
k has units of 1/time
C has units of mass/volume
V has units of volume
Thus the decay rate = kCV (mass/time)

31

Material Balance Equation

Steady state with decay

Input rate = Output rate + kCV

Example 4

A lake with a constant volume of 10^7 m^3 is fed by a clean stream at a flow of 50 m³/s. A factory dumps 5.0 m³/s of a non-conservative pollutant with a concentration of 100 mg/L into the lake. The pollutant has a reaction (decay) rate coefficient of 0.4/day (= $4.6 \times 10^{-6} \text{ s}^{-1}$). Find the steady-state concentration of the pollutant in the lake.

32

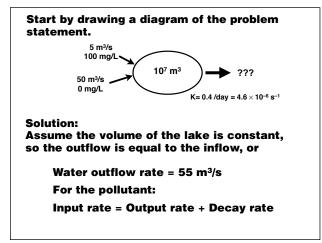


Image: Step function response

Mass balance:

Accumulation rate = Input rate
- Output rate
- Decay rate

$$V \frac{dC}{dt} = S - QC - kCV$$

34

Eventually system reaches a steady-state concentration, $C(\infty)$ (i.e., when dC/dt = 0)

$$\boldsymbol{C}(\infty) = \boldsymbol{C}_{\infty} = \frac{\boldsymbol{S}}{\boldsymbol{Q} + \boldsymbol{k}\boldsymbol{V}}$$

Concentration as a function of time (before steady-state is reached) is given by the transient equation:

$$\frac{dC}{dt}=\frac{S}{V}-\frac{QC}{V}-kC$$

35

which can be rearranged to give:

$$\frac{dC}{dt} = -\left(k + \frac{Q}{V}\right)\left[C - \frac{S}{Q + kV}\right]$$

So we can substitute for C_{∞} :

$$\frac{d\boldsymbol{C}}{dt} = -\left(\boldsymbol{k} + \frac{\boldsymbol{Q}}{\boldsymbol{V}}\right) \left[\boldsymbol{C} - \boldsymbol{C}_{\infty}\right]$$

To integrate, we simply the C – C $_{\infty}$ term:

$$y = C - C_{\infty} \Rightarrow \frac{dy}{dt} = \frac{dC}{dt}$$

$$\frac{dy}{dt} = -\left(k + \frac{Q}{V}\right)y$$

 \rightleftharpoons a familiar, separable differential equation (k+Q/V is a constant!), with a solution of the form:

$$y = y_0 e^{-\left(k + \frac{\alpha}{V}\right)t}$$
 where $y_0 = C_o - C_{\infty}$

Substituting and rearranging,

At

$$C(t) = C_{\infty} + (C_0 - C_{\infty}) \exp\left[-\left(k + \frac{Q}{V}\right)t\right]$$

t = 0, exp = 1
t = ∞, exp = 0

37

$$C(t) = C_{\infty} + (C_0 - C_{\infty}) \exp\left[-\left(k + \frac{Q}{V}\right)t\right]$$

What is the general behavior of this equation?
At time = 0, the exponential term goes to 1 so
 $C = C(0)$
At time = ∞ , exp goes to $0 \Rightarrow C = C_{\infty}$

$$C_0 = C_0 = C_0$$

Time

Example 5

Bar with volume of 500 m³

Fresh air enters at a rate of 1000 m³/hr Bar is clean when it opens at 5 PM

Formaldehyde is emitted at 140 mg/hr after 5 PM by smokers

k = the formaldehyde removal rate coeff. = 0.40/hr

What is the concentration at 6 PM?

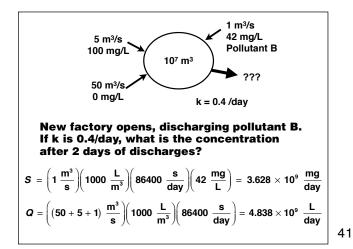
$$\boldsymbol{C}(t) = (\boldsymbol{C}(0) - \boldsymbol{C}_{\infty}) \exp\left[-\left(\boldsymbol{k} + \frac{\boldsymbol{Q}}{\boldsymbol{V}}\right)t\right] + \boldsymbol{C}_{\infty}$$

Solution—First we need C_{∞}

Q = 1000 m³/hr; V = 500 m³; S=140 mg/hr; k = 0.40 /hr

$$C_{\infty} = \frac{S}{Q + kV} = \frac{140.0 \text{ mg/hr}}{1000.0 \text{ m}^3/\text{hr} + (0.4/\text{hr} \times 500 \text{ m}^3)}$$
$$C_{\infty} = 0.117 \text{ mg/m}^3$$

For the concentration at 6 PM, one hour after the bar opens, substitute known values into:


$$C(t) = (C_0 - C_{\infty}) \exp\left[-\left(k + \frac{Q}{V}\right)t\right] + C_{\infty}$$

$$C(t) = \left(0 - 0.117 \frac{\text{mg}}{\text{m}^3}\right) \exp\left[-\left(0.40 \frac{1}{\text{hr}} + \frac{1000.0 \frac{\text{m}^3}{\text{hr}}}{500.0 \text{m}^3}\right)t\right] + 0.117 \frac{\text{mg}}{\text{m}^3}$$

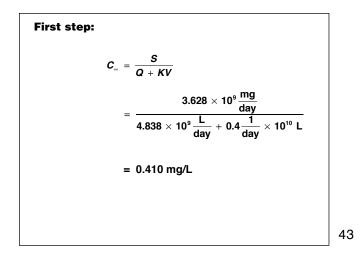
$$C(t) = 0.117 \frac{\text{mg}}{\text{m}^3}(1 - e^{-2.4})$$

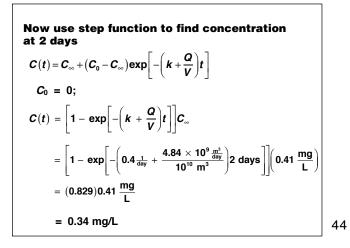
$$C(1 \text{ hr}) = 0.117 \frac{\text{mg}}{\text{m}^3}(1 - e^{-2.4}) = 0.106 \text{ mg/m}^3$$

40

$$V = 10^{7} \text{ m}^{3}$$

$$Q = 4.838 \times 10^{9} \text{ L/day}$$


$$S = 3.628 \times 10^{9} \text{ mg/day}$$


$$k = 0.4/\text{day}$$

$$C = ____$$

$$C(t) = C_{\infty} + (C_{0} - C_{\infty}) \exp\left[-\left(k + \frac{Q}{V}\right)t\right]$$

$$C_{\infty} = \frac{S}{Q + kV}$$

